Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1181). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Harris, C. M. & Lockyer, T. N. (1959). J. Chem. Soc. A, pp. 3083-3085.
- Herber, R. H., Croft, M., Coyer, M. J., Bilash, B. & Sahiner, A. (1994). Inorg. Chem. 33, 2422-2426.
- Gould, R. O. & Smith, D. E. (1986). CADABS. Program for Data Reduction. Univ. of Edinburgh, Scotland.
- Gould, R. O. & Taylor, P. (1986). CALC. Program for Molecular Geometry Calculations. Univ. of Edinburgh, Scotland.
- Macgregor, S. A., McInnes, E. J. L., Sorbie, R. J. & Yellowlees, L. J. (1993). Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, edited by A. J. L. Pombeiro & J. A. McCleverty, pp. 503-517. Dordrecht: Kluwer Academic Publishers.
- Osborn, R. S. & Rogers, D. (1974). J. Chem. Soc. Dalton Trans. pp. 1002-1004.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Walker, N. G. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Yam, V. W.-W., Choi, S. W.-K., Lai, T.-F. & Lee, W.-K. (1993). J. Chem. Soc. Dalton Trans. pp. 1001–1002.

Acta Cryst. (1995). C51, 2025-2028

N-Benzenesulfonylglycylglycine, (I), and Tetrakis(μ -*N*-benzenesulfonylglycylglycinato)bis[aquacopper(II)](*Cu*-*Cu*)-Water (1/4), (II)

Kakoli Mukherjee, Tapati Banerjee and Priyobroto Roychowdhury

Department of Physics, University College of Science and Technology, Calcutta 700009, India

TAKASHI YAMANE

Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-Ku, Nagoya 464, Japan

(Received 19 April 1993; accepted 19 April 1995)

Abstract

Each Cu^{II} ion in [{ $Cu(H_2O)$ }₂(μ - $C_{10}H_{11}N_2O_5S$)₄].4H₂O, (II), is coordinated to its centrosymmetric counterpart, the equatorial carbonyl and carboxylic O atoms of two *N*-benzenesulfonylglycylglycinate moieties and their centrosymmetric counterparts and to an axial water O atom. The centrosymmetrically related Cu^{II} ions

are linked by bridges of 2.641 (1) Å to form dimeric dinuclear units. In both (I) $(C_{10}H_{12}N_2O_5S)$ and (II), the terminal and peptide N atoms are in *cis* conformation. The carboxylic group is localized in (I) but a complete delocalization of this group has been observed in the metal complex. When coordinated by the metal ion, the *N*-benzenesulfonylglycylglycine moieties undergo major conformational changes about the N—C^{α} bonds along the peptide backbone.

Comment

Transition metal complexes of amino acids and peptides are of considerable importance because they provide simple models for more complex metal-enzyme and metal-peptide systems. The crystal structures of (I) and (II) have been determined in order to study the effect of a modified amino acid side chain on the coordinating properties of the peptide bond.

In both (I) and (II), the S—N distances are shorter than the corresponding single-bond distance of 1.764 Å in sulfamic acid (Sass, 1960), indicating considerable double-bond character of the bonds. This shortening is more pronounced in the metal complex; a similar finding has been observed in the structure of *N*-benzenesulfonyl-DL-alanine and its copper complex (Chaudhuri, 1984). The enlargement of the S—O bond distances in the metal complex may be due to the increased double-bond character of the S—N(1) bonds in the complex.

The N(1)—C(7) bond distances in both of the structures are shorter than corresponding distances measured in α -glycylglycine [1.484 (2) Å reported by Kvick, Al-Karaghouli & Koetzle (1977), and 1.497 Å by Biswas, Hughes, Sharma & Wilson (1968)]. Shortening of the N(1)—C(7) bond may be attributed to the conjugation of the benzene sulfon-amide group with the glycylglycine moiety. The carbonyl group [C(8)—O(3)] is delocalized in both the free ligand and the complex. The terminal and peptide N atoms are in *cis* conformation in both the free ligand (I) and the complex (II).

Bond distances indicate localization of the terminal carbonyl and carboxylic bonds in (I), but in the complex there is complete delocalization of the π electrons in these bonds. Similar phenomena have been observed in the structures of other metal-peptide complexes (Meester & Hodgson, 1977; Chaudhuri, 1984).

The coordination behaviour of the Cu^{II} ion is very interesting in this complex. Each Cu^{II} ion is coordinated to the carbonyl and carboxylic O atoms of two *N*-benzenesulfonylglycylglycine moieties, their centrosymmetrically related counterparts and to a water O atom

Fig 1. View of *N*-benzenesulfonylglycylglycine, (I), showing the atomnumbering scheme.

(see Fig. 2). The sixth coordination site of the Cu^{II} ion is occupied by a centrosymmetrically related Cu^{II} ion at a distance of 2.649 (1) Å, forming dimeric dinuclear units. This coordination geometry closely resembles that found in the structure of Cu^{II} succinate dihydrate (O'Connor & Maslen, 1966). When coordinated by the metal ion, the *N*-benzenesulfonylglycylglycine moieties undergo major conformational changes about the N(2)—C(9) bonds.

The crystal structures are stabilized by hydrogen bonding. The carbonyl O atom O(3) of the free ligand molecule (I) accepts two hydrogen bonds, one from the N(1) atom of a glide-related molecule and the other from the carboxylic O atom O(4) of the translated-related molecule. In the complex (II), the N(1B) atom is hydrogen bonded to the water molecule. The coordinated water molecule donates a hydrogen bond to the coordinated carboxylic O atom O(5) of ligand B.

Experimental

The compounds were synthesized in the Department of Chemistry, University College of Science, Calcutta, by the method of Mukherjee & Chakraborty (1985). Crystals of (I) were obtained from ethanol. Deep-blue crystals of complex (II) were obtained from hot water. For each compound, the crystal density D_m was measured by flotation (benzene/bromoform mixture).

Ligand (I)

Crystal data $C_{10}H_{12}N_2O_5S$ $M_r = 272.3$

Monoclinic $P2_1/a$ a = 14.980 (2) Å b = 6.050 (2) Å c = 13.310 (2) Å $\beta = 101.21$ (7)° V = 1183.26 (5) Å³ Z = 4 $D_x = 1.53 \text{ Mg m}^{-3}$ $D_m = 1.5 \text{ Mg m}^{-3}$

Data collection

Rigaku four-circle AFC-V diffractometer $\omega/2\theta$ scans Absorption correction: none 1757 measured reflections 1715 independent reflections 1525 observed reflections $[I \ge 2.5\sigma(I)]$

Refinement

Refinement on *F* R = 0.0615wR = 0.0567S = 1.17 Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 14 reflections $\theta = 6-20^{\circ}$ $\mu = 2.56$ mm⁻¹ T = 295 K Needle $0.35 \times 0.30 \times 0.30$ mm Colourless

 $R_{int} = 0.01$ $\theta_{max} = 60^{\circ}$ $h = 0 \rightarrow 17$ $k = 0 \rightarrow 7$ $l = -15 \rightarrow 15$ 3 standard reflections monitored every 50 reflections intensity decay: < 2%

 $(\Delta/\sigma)_{max} = 0.984$ $\Delta\rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.04 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

1525 reflections		Atomic scattering	g factors	C(8)	0.3284 (2)	0.5390 (7) 0.6291 (3)	0.040(1)
211 parameters		from Internation	onal Tables	U(3) N(2)	0.2853(1) 0.4181(2)	0.7089 ($\begin{array}{ccc} 5) & 0.6015(2) \\ 7) & 0.6371(3) \end{array}$	0.0461 (9)
Only coordinates of	H atoms	for X-ray Crys	tallography	C(9)	0.4696 (2)	0.7208 (8) 0.6181 (4)	0.043(1)
refined		(1974, Vol. IV))	C(10)	0.5641 (2)	0.6541 (7) 0.6041 (3)	0.043 (1)
$w = \frac{20.92}{[\sigma^2(F)]}$				O(4)	0.6086 (2)	0.8305 (6) 0.5839 (3)	0.057 (1)
$+ 0.000037F^{2}$]				O(5)	0.5921 (2)	0.4700 (5) 0.6114 (2)	0.053 (1)
Complex (II)				Complex ((II)			
Complex (II)				Cu	0.9898	0.5462	1.6597 (1)	0.0332 (2)
Crystal data				O(2W)	0.9712(2) 0.0138(3)	0.8680 ($\begin{array}{ccc} 3) & 1.9277(4) \\ 4) & 0.7686(6) \end{array}$	0.0355 (9)
$[Cu(C_{10}H_{11}N_2O_5S)_2(]$	H ₂ O)]	Cu $K\alpha$ radiation		O(3W)	0.0156 (5)	0.1152 (4) 0.6977 (8)	0.0760(2)
2H ₂ O		$\lambda = 1.5418$ Å		C(1A)	1.4366 (3)	0.6753 (4) 0.5864 (6)	0.033 (1)
M = 662.14		Cell parameters f	rom 16	C(2A)	1.3830 (5)	0.5785 (5) 0.5315 (8)	0.060 (2)
$m_r = 002.14$		reflections		C(3A)	1.3924 (6)	0.5403 (6) 0.3599 (9)	0.071 (3)
		$A = 10, 25^{\circ}$		C(4A)	1.4528 (5)	0.5967 (6) 0.2467 (7)	0.060 (2)
FI - 1271((2) Å		$\theta = 10 - 25$		C(5A)	1.3030 (3)	0.0940 ($\begin{array}{ccc} 0 & 0.3003 (8) \\ 5 & 0.4727 (7) \end{array}$	0.057(2)
a = 15.710(3) A		$\mu = 3.229 \text{ mm}^{-1}$		S(A)	1.4339 (1)	0.7233 (1) 0.8053(1)	0.0360 (4)
b = 12.3/4 (3) A		I = 29 / K		O(1A)	1.5173 (3)	0.6860 (4) 0.8650 (5)	0.058 (1)
c = 7.992 (4) A		Plate		O(2A)	1.4225 (4)	0.8379 (3) 0.8235 (5)	0.059 (2)
$\alpha = 97.66 (3)^{\circ}$		$0.30 \times 0.25 \times 0.00$.20 mm	N(1A)	1.3370 (3)	0.6628 (3) 0.9024 (5)	0.036 (1)
$\beta = 83.12 (3)^{\circ}$		Deep blue		C(7A)	1.2407 (4)	0.7007 (5) 0.8994 (6)	0.043 (2)
$\gamma = 95.82 \ (2)^{\circ}$				O(3A)	1.1009(3)	0.7527 (4) 1.0746 (6) 3) 1.0806 (5)	0.032(1)
V = 1329.6 (8) Å ³				N(2A)	1.1023(2) 1.2411(3)	0.7357 (1.0090(5) 3) 1.2056(5)	0.040(1)
Z = 2				C(9A)	1.1960 (4)	0.7490 (4) 1.3792 (6)	0.036(1)
$D_{\rm r} = 1.65 {\rm Mg}{\rm m}^{-3}$				C(10A)	1.1266 (3)	0.6523 (3) 1.4256 (6)	0.028 (1)
$D_{\rm c} = 1.61 {\rm Mg m}^{-3}$				O(4A)	1.0905 (2)	0.6584 (3) 1.5804 (4)	0.033 (1)
$\mathcal{D}_m = 1.01$ Mg m				O(5A)	1.1102 (2)	0.5753 (2) 1.3127 (4)	0.032 (1)
Data collection				C(1B)	0.7190 (4)	0.9596 (3) 0.8075 (6)	0.032 (1)
		D		C(2B)	0.6260 (4)	0.9952 ($\begin{array}{ccc} 4) & 0.8200(7) \\ 4) & 0.6736(8) \end{array}$	0.042(2) 0.047(2)
Rigaku four-circle Al	FC-V	$R_{\rm int} = 0.024$		C(4B)	0.6518 (4)	1.0146 (4) 0.5198 (7)	0.044(2)
diffractometer		$\theta_{\rm max} = 62.5^{\circ}$		C(5B)	0.7436 (4)	0.9781 (4) 0.5088 (6)	0.042 (2)
$\omega/2\theta$ scans		$h = -16 \rightarrow 16$		C(6B)	0.7798 (4)	0.9502 (4) 0.6528 (6)	0.037 (1)
Absorption correction	า:	$k = -14 \rightarrow 14$		S(<i>B</i>)	0.7638 (1)	0.9309 (1) 0.9928 (2)	0.0442 (4)
none		$l = -9 \rightarrow 9$		O(1B)	0.6811 (4)	0.9123 (4) 1.1151 (5)	0.062 (2)
4240 measured reflec	tions	3 standard reflect	ions	O(2B) N(1B)	0.8397(5) 0.8178(3)	1.0142 (4	$\begin{array}{ccc} 4) & 1.0327(7) \\ 3) & 0.0485(5) \end{array}$	0.084(2)
4201 independent ref	lections	monitored ever	v 50	C(7B)	0.7581(3)	0.7135 ((0.9384(6))	0.037(1)
3901 observed reflect	tions	reflections	,	C(8B)	0.7515(3)	0.6576 (3) 1.0993 (6)	0.029(1)
$[I > 2.5\sigma(I)]$	lions	intensity decay	· ~ 2%	O(3B)	0.7042 (3)	0.5690 (3) 1.1061 (5)	0.045 (1)
[1 2:00 (1)]		mensity decuy	2.10	N(2B)	0.7979 (3)	0.7130 (3) 1.2274 (5)	0.031 (1)
Pofinamant				C(9B)	0.7878 (3)	0.6781 (4	4) 1.3949 (6)	0.033 (1)
Kejinemeni				O(AB)	0.8701(3)	0.6113 (.	(3) 1.4201(3) (4) 1.5780(4)	0.026(1)
Refinement on F		$(\Delta/\sigma)_{\rm max} = 0.117$	7	O(5B)	0.9080(2)	0.5483 (1.3780(4) 3) $1.3054(4)$	0.033(1)
R = 0.0574		$\Delta \rho_{\rm max} = 1.23 \ {\rm e} \ {\rm \AA}$	√ ^{−3}	0(02)	017 000 (2)			0.055 (1)
wR = 0.0599		$\Delta \rho_{\rm min} = -1.07 \ {\rm e}$	$Å^{-3}$	Tal	ble 2. Sele	cted geome	etric parameters	(Å. °)
S = 1.13		Extinction correct	tion: none	Complex (TI)	0	I	
3901 reflections		Atomic scattering	factors	Cumplex (11)	2 649 (1)	$C_{\rm H} = O(1W)$	2 179 (3)
361 parameters		from Internatio	nal Tables	Cu = O(4A)		1.968 (3)	Cu=O(4B)	1.958 (3)
H-atom narameters no	ot	for X-ray Crys	tallogranhy	Cu—O(5A')	1.946 (3)	CuO(5B')	1.980 (3)
refined	01	(1074 Vol IV)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
$w = 4.67/\sigma^2(F)$		(1974, 00.10)	,	O(5A')Ci	I - O(5B')	89.5 (2)	O(4A)— Cu — $O(1W)$	98.4 (2)
w = 4.0770 (r)				O(1W) - Cu	-0(5')	92.4 (1)	O(4A) - Cu - O(4B)	88.0 (2)
Table 1 Fractiona	l atomic	coordinates and	equivalent	$O(4R) \rightarrow Cu$	-0(5')	1683(2)	Cu = Cu = O(5)	833(1)
		coordinates and	cyuivuieni	O(4B)—Cu-	-O(5A')	88.4 (2)	Cu' - Cu - O(1W)	176.0 (1)
isotropic d	isplaceme	nt parameters (A	(²)	O(4B)-Cu-	-O(1W)	99.2 (2)	Cu'-Cu-O(4B)	83.1 (1)
Um	$=(1/3)\Sigma_{i}\Sigma_{j}$			O(4A)—Cu-	O(5')	91.6 (2)	Cu'—Cu—O(4A)	84.8 (1)
* ભ્	(1/0)=/=	.jo ija, aj a (aj)		U(4A)—Cu-	-O(5A')	167.9(2)	0	
Ligand (I)	У	Z	U_{eq}			Ligand ()	D A Com	iplex (II)
C(1) 0.2547 (2)	0.0498 (7	0.8534 (3)	0.044 (1)	$C(1) \rightarrow C(2)$		1.369 (7)	1.388 (8)	1.379 (8)
C(2) 0.2227 (3)	-0.1617 (8	3) 0.8368 (3)	0.051 (1)	C(2)—C(3)		1.391 (7)	1.385 (9)	1.412 (9)
C(3) 0.1378 (3)	-0.2121 (9	0.8583 (4)	0.055 (2)	C(3)-C(4)		1.363 (8)	1.365 (9)	1.385 (8)
C(4) 0.0885 (3)	-0.0556 (9	0.8971 (4)	0.058 (2)	C(4)C(5)		1.366 (8)	1.381 (9)	1.369 (8)
C(5) = 0.1221(3) C(6) = 0.2064(2)	0.1532 (9	() U.9167 (4)	0.063 (2)	C(5) - C(6)		1.390 (7)	1.391 (8)	1.403 (8)
S 0.2004 (3)	0.2091 (9	(9) 0.0931(4) (0.8181(1))	0.035 (2)	C(1) = S(1)		1.384 (7)	1.3/1(/)	1.404 (/) 1 761 (6)
O(1) 0.4199 (2)	-0.0571 (6	(0.8382(3))	0.068(1)	$S_0(1)$		1.419 (5)	1.430 (5)	1.427 (5)
O(2) 0.3836 (2)	0.3360 (6	o) 0.8576 (3)	0.061 (1)	S-0(2)		1.410 (5)	1.429 (4)	1.422 (6)
N(1) 0.3368 (2)	0.1523 (6	i) 0.6923 (3)	0.045 (1)	S-N(1)		1.652 (5)	1.623 (4)	1.623 (4)
C(7) 0.2785 (2)	0.3334 (7	7) 0.6497 (3)	0.045 (1)	N(1)—C(7)		1.446 (6)	1.450 (7)	1.459 (6)

C(7)—C(8)	1.504 (7)	1.514 (6)	1.529 (7)					
C(8) - O(3)	1.231 (6)	1.227 (5)	1.220 (5)					
C(8) - N(2)	1.328 (5)	1.332 (7)	1.343 (6)					
N(2) - C(9)	1.438 (7)	1.445 (6)	1.448 (7)					
C(9) - C(10)	1.518 (5)	1.509 (6)	1.527 (7)					
C(10) - O(4)	1.314 (6)	1.272 (6)	1.267 (5)					
C(10) - O(5)	1,188 (6)	1.244 (5)	1.253 (5)					
C(1) - C(2) - C(3)	118.5 (6)	118.6 (6)	118.2 (5)					
C(2) - C(3) - C(4)	120.7 (6)	120.8 (7)	120.5 (5)					
C(3) - C(4) - C(5)	120.5 (6)	120.7 (6)	120.5 (5)					
C(4) - C(5) - C(6)	120.1 (7)	118.9 (6)	120.7 (5)					
C(5) - C(6) - C(1)	118.7 (7)	120.3 (6)	118.2 (5)					
C(6) - C(1) - C(2)	121.4 (5)	120.7 (5)	121.9 (5)					
C(1) S $O(1)$	109.0 (4)	107.4 (3)	107.8 (3)					
C(1) - S - O(2)	108.3 (4)	107.1 (3)	107.2 (3)					
C(1)— S — $N(1)$	106.5 (3)	107.7 (3)	108.4 (2)					
S-C(1)-C(2)	119.5 (4)	120.6 (4)	118.5 (4)					
S-C(1)-C(6)	119.1 (5)	118.6 (4)	119.5 (4)					
O(1) - S - N(1)	105.4 (4)	106.4 (3)	107.7 (3)					
O(2) - S - N(1)	105.6 (4)	108.4 (3)	105.5 (3)					
S-N(1)-C(7)	117.6 (4)	120.1 (4)	119.4 (4)					
O(1) - S - O(2)	121.2 (4)	119.5 (3)	119.8 (3)					
N(1)-C(7)-C(8)	114.5 (4)	113.4 (4)	113.4 (4)					
C(7)—C(8)—O(3)	119.6 (4)	119.5 (4)	119.7 (4)					
C(7)—C(8)—N(2)	118.9 (6)	117.0 (4)	116.0 (4)					
O(3)-C(8)-N(2)	121.5 (6)	123.5 (5)	124.3 (5)					
C(8)—N(2)—C(9)	121.5 (5)	121.9 (4)	122.5 (4)					
N(2)-C(9)-C(10)	110.7 (5)	113.6 (4)	114.3 (4)					
C(9)-C(10)-O(4)	109.4 (6)	115.2 (4)	114.6 (4)					
C(9)—C(10)—O(5)	124.2 (6)	118.5 (4)	119.0 (4)					
O(4)-C(10)-O(5)	126.4 (5)	126.3 (4)	126.4 (4)					
C(1)—S—N(1)—C(7)	67.1 (5)	-78.9 (4)	-78.9 (4)					
O(1)SN(1)C(7)	-177.3 (5)	166.3 (4)	37.5 (5)					
O(2) = S = N(1) = C(7)	- 47.9 (6)	36.6 (5)	166.6 (4)					
S-N(1)-C(7)-C(8)	95.1 (6)	-122.7 (4)	-99.3 (4)					
N(1)-C(7)-C(8)-O(3)	-173.5 (5)	-171.4 (5)	-179.5 (5)					
N(1)—C(7)—C(8)—N(2)	9.3 (8)	8.2(7)	2.1 (6)					
C(7)—C(8)—N(2)—C(9)	179.8 (5)	-170.6 (5)	171.7 (4)					
O(3)-C(8)-N(2)-C(9)	2.7 (9)	8.9(7)	-6.7 (8)					
C(8)-N(2)-C(9)-C(10)	-164.7 (5)	67.6 (6)	96.4 (5)					
N(2) - C(9) - C(10) - O(4)	178.2 (5)	175.7 (4)	147.8 (4)					
N(2)-C(9)-C(10)-O(5)	-2.3 (8)	-4.0(6)	-34.2 (6)					
Symmetry	v code: (1) ?	-r1-v3						
Symmetry code: (1) $2 - x$, $1 - y$, $3 - z$.								

The structures were solved by direct methods and Fourier

syntheses using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) and SHELX76 (Sheldrick, 1976).

We thank Dr G. N. Mukherjee for the gift of the compounds and the Council of Scientific and Industrial Research for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1088). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Biswas, A. B., Hughes, E. W., Sharma, B. D. & Wilson, J. N. (1968). Acta Cryst. B24, 40-50.
- Chaudhuri, S. (1984). J. Chem. Soc. Dalton Trans. pp. 779-783.
- Kvick, A., Al-Karaghouli, A. R. & Koetzle, T. F. (1977). Acta Cryst. B33, 3796–3801.
- Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- (7) Meester, P. & Hodgson, D. (1977). Acta Cryst. B33, 3505-3510.
- (5) Mukherjee, G. N. & Chakraborty, P. K. (1985). Indian J. Chem. 24A,
 (6) 841–848.
- (7) O'Connor, B. H. & Maslen, E. N. (1966). Acta Cryst. 20, 824–835.
 - Sass, R. L. (1960). Acta Cryst. 13, 320-324.
 - Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1995). C51, 2028-2030

Tetraamminebis(saccharinato-N)cadmium

ISABEL PASCUAL

Departamento de Química Inorgánica, Universidad de Zaragoza-CSIC, Facultad de Ciencias, E-50009 Zaragoza, Spain

(Received 22 December 1994; accepted 27 February 1995)

Abstract

Single crystals of the title compound, $[Cd(C_7H_4NO_3S)_2(NH_3)_4]$, were prepared from tetraaquabis(saccharinato-N)cadmium dihydrate using ammonia flux [saccharin is 1,2-benzisothiazol-3(2H)-one 1,1-dioxide]. The complex displays the same geometry as the parent compound, although its packing in the solid state and hydrogenbonding network are very different as a result of the absence of the water molecules of crystallization. If exposed to air, the product becomes amorphous; several studies suggest a conversion to the parent hydrogenbonding pattern by the acquisition of water molecules from the moisture in the air.

Comment

The title compound, (I), crystallizes in space group $P2_1/c$ with four molecules in the unit cell. The structure consists of neutral molecules comprising Cd atoms bonded to a mutually *trans* pair of saccharinate anions through the (deprotonated) N atom and four equatorial ammonia ligands which complete a slightly distorted octahedral coordination sphere. The Cd atom sits on a crystallographic inversion centre, which relates the two saccharinate ligands.

Acta Crystallographica Section C ISSN 0108-2701 ©1995